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Organic  solar  cells  (OSCs)  have  achieved  rapid  advance
due to the continuous development of high-performance key
materials.  Recently,  the  power  conversion  efficiencies  (PCEs)
of  OSCs  under  1  Sun  condition  (AM  1.5  G,  100  mW/cm2)  are
striving toward 19%[1−5].  The PCE improvement benefits  from
the largely enhanced short-circuit  current density (Jsc)  and fill
factor  (FF).  However,  these  cells  show  relatively  low  open-
circuit  voltage  (Voc)  around  0.8–0.9  V.  The  rise  of  Internet  of
Things  (IoT)  industry  has  promoted  the  indoor  application  of
solar  cells.  OSCs  can afford  higher  PCEs  under  various  indoor
light  as  compared  to  1  Sun  condition[6, 7],  but  they  present
lower Voc

[8].  Fabricating  tandem  devices  is  an  effective
strategy to boost the performance of OSCs. Sub-cells with syn-
chronously  high Voc, Jsc and  FF  are  highly  desired  in  tandem
cells,  while  these  sub-cells  are  still  limited[9].  Thus,  improving
Voc without sacrificing Jsc and FF is an urgent mission in OSCs.

Voc is  closely  related  to  the  energy  gap  between  the
highest  occupied  molecular  orbital  (HOMO)  level  of  the
donor  (D)  and  the  lowest  unoccupied  molecular  orbital
(LUMO)  level  of  the  acceptor  (A)[10, 11].  By  careful  controlling
the  energy  levels,  single-junction  OSCs  can  give  high Voc,  as
well  as  high  PCEs. Fig.  1(a) summarizes  the  nonfullerene  ac-
ceptors  (NFAs)  used  in  high-voltage  (~1.2  V)  and  high-effi-
ciency  (>6%)  OSCs,  and  the  performance  data  are  listed  in
Table  1.  The  benzotriazole  (BTA)-based  A2-A1-D-A1-A2 type
NFAs  developed  by  Zhou et  al.  yielded  high-voltage  OSCs.
These  molecules  consist  of  an  indenodithiophene  core,  BTA
bridges,  and  (1,1-dicyanomethylene)rhodanine  terminal
groups.  They  used  a  “Same-A-Strategy”  (SAS)  to  design  effi-
cient  donor/acceptor  combinations.  The  D–A  copolymers
based  on  BTA  unit  are  chosen  as  the  donors  to  pair  with  the
BTA-based  acceptors,  producing  a  series  of  high-voltage
OSCs  (~1.20  V)[12−18].  For  example,  the  acceptor  BTA3  with  a
high-lying LUMO level (~–3.7 eV) and a wide optical bandgap
(~1.80  eV)  matches  well  with  the  copolymer  donor  J52-Cl
with  a  fluorinated  BTA  unit[14].  The  resulting  cells  gave  a Voc

of  1.24  V  with  a  PCE  of  10.5%,  which  is  a  breakthrough  for
OSCs with Voc > 1.20 V. PfBTAZT-Cl with thiophene-fused BTA
unit  (fBTAZT)  offered  a Voc of  1.20  V  with  a  PCE  of  8.00%[16].
BTA5  with  benzyl-substituted  end  groups  shows  an  A2−A2

packing and realized an improved PCE of 11.3%[15]. By introdu-
cing  fluorine  atoms,  the  resulted  F-BTA3  achieved  a  PCE  of
8.38% with a Voc of 1.25 V, when blending with a pyrrolo[3, 4-

f]benzotriazole-5,7-dione  (TzBI)-based  polymer  donor[18].
Zhou et  al.  studied  related  charge  generation  mechanism  in
these  high-voltage  OSCs[21].  They  found  that  a  driving  force
of  0.2–0.3  eV  is  required  for  efficient  charge  generation.
When  below  that  value,  the  charge  generation  efficiency
could  drop  and  become  electric  field-dependent.  Perylene
diimide  (PDI)-based  NFAs  are  another  type  of  acceptors  for
high-voltage  OSCs.  Duan et  al.  chose  spirofluorene  as  a
bridge  to  link  two  PDI  units  and  synthesized  the  dimer
SFPDI[19].  BDT-ffBX-DT:SFPDI  solar  cells  offered  a Voc of  1.23  V
and a PCE of 6.2%. Welch et al. synthesized a twisted N-annu-
lated PDI dimer (tPDI2N-EH) and realized a Voc of 1.22 V when
using PTQ10 as the donor[20]. Hou et al. made IO-4Cl by repla-
cing the CN groups in ITIC-4Cl with carbonyl groups[6].  PBDB-
TF:IO-4Cl  cells  achieved  a Voc of  1.24  V  with  a  PCE  of  9.8%.
These cells still gave Voc around 1.10 V and PCEs over 26% un-
der indoor light.

High-Voc OSCs are advancing via the innovative design of
NFAs  and  copolymer  donors.  The  blends  with  bandgaps
around 1.8–1.9 eV match the indoor light  (Fig.  1(b)).  A recent
theoretical  study indicates that  a  maximum efficiency of  52%
is achievable under indoor light[22]. Materials that can offer syn-
chronously  high Voc, Jsc and  FF  are  quite  limited.  To  make
highly  efficient  indoor  and tandem OSCs (Figs.  1(c) and 1(d)),
more high-performance OSC materials are required.
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Table 1.   Detailed parameters for OSCs with ~1.2 V Voc and >6% PCEs.

Non-fullerene acceptors Polymer donors
Voc (V) Jsc (mA/cm2) FF PCE (%) Ref.

Name HOMO (eV) LUMO (eV) Name HOMO (eV) LUMO (eV)

BTA3 –5.49 –3.73

J61 –5.32 –3.38 1.15 10.84 0.66 8.3 [12]
J71 –5.35 –3.40 1.20 10.39 0.69 8.6 [13]
J52-Cl –5.39 –3.45 1.24 13.16 0.67 10.5 [14]
J52-F –5.36 –3.42 1.19 11.56 0.66 9.1 [15]
PfBTAZT-Cl –5.44 –3.59 1.20 11.11 0.60 8.0 [16]
PBT1-C –5.49 –3.42 1.21 10.89 0.57 8.6 [17]

F-BTA3 –5.59 –3.82 P2F-EHp –5.41 –3.55 1.25 11.31 0.59 8.4 [18]
BTA5 –5.55 –3.71 J52-F –5.36 –3.42 1.17 13.80 0.70 11.3 [15]
SFPDI –5.71 –3.69 BDT-ffBX-DT –5.58 –3.35 1.23 8.9 0.56 6.2 [19]
tPDI2N-EH –5.90 –3.60 PTQ10 –5.60 –3.0 1.24 8.9 0.55 6.1 [20]
IO-4Cl –5.72 –3.83 PBDB-TF –5.41 –3.61 1.24 11.60 0.68 9.8 [6]
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Fig. 1. (Color online) (a) The chemical structures for NFAs with ~1.2 V Voc and > 6% PCE. (b) Solar spectrum, emission spectrum of LED 3000 K and
the spectral response for Y6-based low-bandgap OSC and BTA3-based wide-bandgap OSC. (c) The high-voltage OSCs under sun light or indoor
light. (d) Application in tandem structure.
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